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Hydrogen motion and stretched-exponential relaxation in
a-Si:H

Qing Zhang† and Guy J Adriaenssens
Laboratorium voor Halfgeleiderfysica, Katholieke Universiteit Leuven, Celestijnenlaan 200D,
B-3001 Heverlee-Leuven, Belgium

Abstract. Relaxation phenomena involving the motion of hydrogen in hydrogenated
amorphous silicon, that have traditionally been described with a distribution of relaxation times
and a stretched-exponential functional, were recently analysed by Van de Walle (Van de Walle
C G 1996Phys. Rev.B 53 11 292) in terms of retrapping in a three-level energy diagram. We
show that the expression derived by Van de Walle can also be obtained on the basis of hydrogen
transport via interstitial positions which are in thermal equilibrium with a set of hydrogen traps
located about 1 eV below the hydrogen chemical potential. However, the models based on
hydrogen retrapping only give a good account of the relaxations for temperatures above room
temperature. Dispersive behaviour is assumed to be responsible for the discrepancy at lower
temperatures.

1. Introduction

Relaxation processes for which the time dependence of the relaxing quantityX can be
described by the relation

X = X0 exp[−(t/τK)β ] β < 1 (1)

(the so-called stretched or Kohlrausch exponential, whereτK andβ are constants, andX0

is the initial value ofX) have been observed for many physical properties of disordered
materials. For hydrogenated amorphous silicon (a-Si:H), the recovery of the photocreated
defect density [1–4], the relaxation of either defects or a dark current induced by thermal
quenching [5–8], and the variation of the band-tail carrier density caused by bias annealing
[9] have been found to fit the stretched-exponential pattern. Since it was further shown
[5, 10] that the time dependence of hydrogen diffusion in the material fits in well with the
stretched-exponential parameters deduced from the other experiments, and given the fact
that a link between the relaxational behaviour and hydrogen motion had been assumed all
along, the stretched-exponential law has become widely accepted for describing relaxations
in a-Si:H.

A particular form of equation (1) can be derived from dX/X dt , the rate equation for
the observed quantity, when either one of the following two possibilities is realized.

(i) Instead of a single rate constant, there is a distribution of relaxation times [11–
13]. In other words, the observed departure from equilibrium,X(t), is the sum of many
components, each of which has its single specific rate constant. Experimental data can then
be explained by making a suitable choice of the rate-constant distribution for a concrete
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relaxation [2, 3]. In this way, each observed process may have its own rate distribution,
with no fundamental link between the distributions for different observed quantities. This
approach has, therefore, been called microscopically arbitrary.

(ii) The rate constant has a power-law time dependencet−(1−β) (a formalism already used
by Kohlrausch) [10]. It is the observation [5] of such a power law for the time-dependent
diffusion coefficient for hydrogen in a-Si:H that has linked hydrogen to the a-Si:H relax-
ations as mentioned above. In addition, the activation energy for H diffusion (1.2–1.5 eV)
[14–16] is of the order of the activation energies (generally in the range of 0.9–1.0 eV) that
are found for the relaxation timesτ which correspond to the various relaxation processes
[1, 5, 8, 9].

While there clearly is sufficient evidence to support the notion that a direct link exists
between hydrogen motion and defect relaxation [14, 17–21], the mechanism of that coupling
remains unresolved. The combination of a power-law time dependence for the H diffusion
and an exponential distribution of weak Si–Si bonds that can act as H sites [5, 10] might
invite a comparison with electronic dispersive transport models, but the activation energies
near 1 eV for the relaxation timesτ are much too large to be accounted for by such
descriptions. Consequently, there is still room for new approaches to the problem. Li and
Biswas [22] recently developed a model in which a distribution for the formation energy
of the metastable defects that are assumed to be created by exciting bonded hydrogen into
interstitial states arises from a bond-length disorder in the weak Si–Si bonds of the material.
However, the calculational results deviate from the experimental data much more than is the
case with a stretched-exponential description, especially at long relaxation times. Another
model for explaining the stretched-exponential character of the relaxations, and one that
does not invoke a distribution of energies, was recently proposed by Van de Walle [23].
It contains a natural explanation for the experimentally observed activation energy of the
relaxations. According to this model, a departure from equilibrium caused by external
factors, for instance thermal quenching and light soaking, results in the excitation of H
from reservoir states to trapping states. The relaxation of the departure from equilibrium
occurs when H escapes from the traps, migrates some distance via interstitial states, and
then falls back into the reservoir states. The relaxation is described by the expression [23]

t = −τ ln
X

X0
+ γ

(
X

X0
− 1

)
(2)

whereτ andγ are constants which depend on the system parameters. Despite the functional
difference between equation (2) and the stretched-exponential form of equation (1), it was
found [23] that the fit of equation (2) to some of the experimentally observed relaxations
is virtually indistinguishable from the one provided by equation (1). The model was hence
seen as a demonstration of the fact that a distribution of H trapping energies is not necessary
to account for relaxations which are of the stretched-exponential type. The only requirement
is that there be deeper-lying hydrogen levels that can act as a reservoir.

However, a more extensive examination of available experimental data indicates that
agreement with the model is not always as good as was originally thought. In this paper
we, therefore, propose a modified approach, still based on the concept of H retrapping, for
obtaining the relaxation expression of equation (2). The analysis provides a simple physical
meaning for the parameterτ , and leaves room for adjustments to suit changing experimental
conditions. We will also discuss the difference between the forms of equation (1) and
equation (2) in some detail.
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2. The simplified retrapping model

In our analysis, we do not introduce the concept of ‘reservoir states’ explicitly. In fact, the
difference between traps and ‘reservoir states’ as used by Van de Walle [23] lies basically in
their position on the energy scale, but is not specified further. We propose to let a set of traps
take the role of both the ‘T’ and ‘R’ states of the Van de Walle model. An initial external
disturbance can redistribute the hydrogen amongst those states, but near equilibrium, or
when relaxing towards equilibrium, diffusive hydrogen motion will be dominated by traps
at the top of the distribution due to the exponentially decreasing probability of emission
from the deeper ones [24]. Thermalization of the interstitial levels with respect to the top of
the trap distribution is assumed. In our model we will hence assume that hydrogen which
participates in the hydrogen diffusion will be found in one of only two states, either in an
interstitial state from where H can migrate, or in a trap where H is immobile until released
into an interstitial position.

Figure 1. The parameterτ of equation (2) as a function of temperature. The diamonds,
squares, triangles, and circles represent the values ofτ obtained by fitting the relaxation data in,
respectively, figure 1 of reference [5], figure 1 of reference [1], figure 7 of reference [8], and
figure 8 of reference [8].

Support for such a simple model can be derived from the results shown in figure 1.
Shown there are the values ofτ obtained by fitting equation (2) to the experimental data
for (a) the recovery of photocreated defects in undoped a-Si:H (figure 1 of reference [1]),
(b) the decay of the excess carrier density induced by rapid thermal quenching of doped
a-Si:H (figure 1 of reference [5]), and (c) the variation in the dark conductivity caused by
a small disturbance in the thermodynamic equilibrium (figures 7 and 8 of reference [8]).
It is seen that the parameterτ exhibits an Arrhenius behaviour, with a common activation
energy of∼1.0–1.1 eV. Consequently, it should be possible to collectively model these
phenomena in a simple way. Specifically, and whatever the actual underlying processes, it
may be helpful to think of the dominant microscopic processes in the relaxation as being
the capture of H into a trap, e.g. corresponding to the H bonding to a Si and passivation
of a silicon dangling bond (Si–), and the release of H from a Si–H bond to the interstitial
state, representing the formation of a silicon dangling bond and a bond-centre site (Si–H–Si)
known to be the lowest-energy interstitial site [10, 25, 26]. The formation and annihilation
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of the metastable defects can then symbolically be described by the relation

Si–H+ Si–Si
 Si–+ Si–H–Si. (3)

The densityNi of H at a trap leveli is consequently determined by the competition
between the release and the trapping of H:

dNi
dt
= −νiNi + σNI (NT i −Ni) (4)

whereNI is the H concentration in the interstitial states,NT i the concentration of possible
trapping sites for H at the leveli, νi the release coefficient of H, andσ the capture
parameter for H. While release depends exponentially on the energy of the trap since
νi = ν0 exp(−Ei/kT ), with ν0 the attempt frequency,Ei the energy of the trap,k the
Boltzmann constant, andT the temperature, this is not the case for capture, and hence the
parameterσ may be taken as constant. The relationship between the equilibrium hydrogen
concentrationsNI in the interstitial states andNi in the trap leveli, at a given temperature,
is given by equation (4) and the condition dNi/dt = 0 as

νiNi = σNI (NT i −Ni). (5)

Since the total amount of H in the system remains constant, we also have∑
Ni +NI =

∑
Ni +NI = Cst . (6)

By summing all of the rate equations with respect to the level indexi, and using equation (6)
to replace

∑
Ni , we obtain a rate equation for the concentration of H in interstitial states:

−dNI
dt
= −

∑
νiNi + σNI

[∑
(NT i −Ni)−NI

]
+ σN2

I (7)

and with the use of equation (5) to eliminateNT i −Ni :
dNI
dt
=
∑

νiNi +
(
σNI −

(∑
νiNi

)/
NI

)
NI − σN2

I . (8)

When the departure from equilibrium conditions remains modest, the approximation∑
νiNi =

∑
νiNi will be valid, and equation (8) can be readily integrated to yield(

σNI +
(∑

νiNi

)/
NI

)
t = − ln

{(
NI −NI
NI0−NI

)([
NI0+

(∑
νiNi

)/
(σNI )

]
×
[
NI +

(∑
νiNi

)/
(σNI )

]−1)}
(9)

whereNI0 is the value ofNI at t = 0. By defining the departure from equilibrium of
the interstitial hydrogen concentrationNI −NI as the relaxing quantityX, we can proceed
with equation (9) to obtain an expression in the form of equation (2). That same expression
can also be obtained when the

∑
νiNi =

∑
νiNi approximation cannot be made, but then

a more complex definition needs to be used forX.
In either case, the interpretation of equation (9) becomes more straightforward, and the

meaning of the coefficients more transparent, when we substituteNI for the expression
(
∑
νiNi)/(σNI ). It may be seen from equation (5) that this amounts to puttingNI =∑
(NT i−Ni). In the context of the simple model of equation (3), the difference between the

density of possible H traps,NT i , and the equilibrium density of occupied traps represents the
(much lower) dangling-bond density, and coupled with it the density of interstitial hydrogen.
Equation (9) can thus be reformulated as

2σNI t = − ln
X

X0
+ ln

X + 2NI
X0+ 2NI

(10)
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or, since the argument of the second logarithmic term will be close enough to 1 to allow
restriction of a series expansion to the leading term,

t = −τ ′ ln X

X0
+ γ ′

(
X

X0
− 1

)
(11)

whereτ ′ = 1/(2σNI ) and γ ′ = τ ′X0/(X0 + 2NI). This expression duplicates the form
of equation (2), but with different definitions of the coefficients to those used in [23].
The coefficientτ ′ represents the average lifetime of H in the interstitial states at a given
temperature, whileγ ′ reflects the degree of departure of the observed relaxation from
the conventional exponential pattern. Without the(

∑
νiNi)/(σNI ) = NI substitution,

the coefficientsτ ′ and γ ′ will be more complex and contain the quantity
∑
νiNi , but

equation (11) remains valid. A further difference from [23] lies in the definition of the
relaxing quantityX. Van de Walle [23] uses the hydrogen concentration in the traps ‘T’
of his model as the relaxing quantity, while we use the departure from equilibrium of the
occupation at the interstitial positions. But since these two quantities are assumed to be in
dynamic equilibrium—both here and with respect to the other (reservoir) states in [23]—the
two definitions are equivalent: variations in occupation of one will be mirrored in variations
in occupation of the other one.

Figure 2. The hydrogen density of states in a-Si:H. Zero energy corresponds to the energy of a
free hydrogen in vacuum.EI stands for the energy of the interstitial Si–H–Si states via which
transport takes place. The Si–H bond states (hydrogen traps atEi ) and weak Si–Si bond states
are below and above the hydrogen chemical potentialEµ, respectively. The contribution of
weak Si–Si bonds to the relaxation processes is neglected in the present analysis.

3. Discussion

The activation energy of∼1.0 eV which is found in figure 1 for theτ of equation (2)
equally applies of course to theτ ′ = 1/(2σNI ) of equation (11). If we assume the capture
coefficientσ to be independent of temperature to a first approximation, then this activated
behaviour can also be assigned to theNI of our model, which is in thermal equilibrium
with the active traps. As was pointed out above, the densityNI will change along with
the density of silicon dangling bonds. Since the equilibrium hydrogen distribution (and
hence dangling-bond density) is determined by the energy difference between the hydrogen
chemical potentialEµ and the trap levelsEi , we can write

NI ∝
∑

Ni exp[−(Eµ − Ei)/kT ]. (12)
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Given the narrow range of activation energies that follows from figure 1, we may conclude
that the combined contribution of the hydrogen trapping states to the relaxation phenomena
can be represented by a single effective levelEH, located∼1.0–1.1 eV belowEµ. Figure 2
illustrates the energy levels in an a-Si:H hydrogen density-of-states diagram [10] that are
compatible with the above argument. Taking the energy of neutral hydrogen atoms in
vacuum as a zero reference, the energy levelEI for the interstitial Si–H–Si site is located at
∼−1 eV [10, 25]. Taking into account the activation energyEI−Eµ ' 1.4 eV for hydrogen
diffusion [10, 19] in a-Si:H, one arrives atEµ ' −2.4 eV. A value ofEH ' −3.6 eV
has been estimated by Van de Walle and Street [25] for the energy of a Si–H bond in a
(crystalline) silicon environment. Consequently, a natural corollary of this energy scheme
is a valueEµ−EH ' 1.2 eV, which is in reasonable agreement with the activation energies
∼1.0–1.1 eV deduced from figure 1. However, this activation energy is somewhat larger
than the values of 0.6 to 0.8 eV deduced for the formation energy of silicon dangling bonds
from either experiment [6] or theoretical considerations [27, 28].

Figure 3. The time dependence of the normalized density of shallow occupied band-tail states
of n-type a-Si:H at the temperatures indicated. The data points are taken from figure 1 of
reference [5]; the solid lines represent a best fit with equation (11), while the dashed lines
indicate the fit with equation (1).

Returning now to a comparison of the specifics of equation (1) and equation (11), we
examine the slopes of the two functions in the type of semi-logarithmic plot that is generally
used to present the relaxation data sets. The derivatives ofX/X0 with respect to log10 t are

d(X/X0)

d(log10 t)
= β(X/X0) ln(X/X0) ln 10 (13)

for equation (1), and

d(X/X0)

d(log10 t)
= γ ′(−1+X/X0)− τ ′ ln(X/X0)

γ ′ − τ ′(X0/X)
ln 10 (14)

for equation (11). The derivative of the stretched-exponential relation is proportional to
β, and hence can become very small along withβ for relaxation at low temperatures
[2, 4]. Even for relaxation at room temperature (RT), whereβ = 0.45 follows from



Hydrogen motion in a-Si:H 5903

figure 1 of reference [5], the derivative is about−0.36 atX/X0 = 0.5, which is smaller
than the derivative in equation (14) can ever be. Indeed, it follows from the definition
γ ′ = τ ′X0/(X0+2NI) thatγ ′ will always be less thanτ ′ and that the slope atX/X0 = 0.5
will never be smaller than−0.44. With such difference between the RT derivatives of the
two functions, one obviously cannot expect a good fit to the RT data from both expressions.
In figure 3, we present the fits produced using equation (1) and equation (11) to the relaxation
of shallow occupied band-tail states, obtained for temperatures between 22 and 125◦C by
Kakalios, Street and Jackson (figure 1 of reference [5]). The dashed lines, corresponding
to equation (1), are superimposed on the data points for all temperatures over the whole
timescale, while the solid lines, produced using equation (11), fit the data well at the higher
temperatures but show significant deviations from the relaxation data at RT. In other words,
the simple model based on a mono-energetic set of hydrogen traps and transport through
interstitial positions is too simple to account correctly for the temperature dependence of
the relaxations. Given the disordered nature of the a-Si:H lattice, such a discrepancy is not
surprising; hydrogen diffusion will progressively become more dispersive as the temperature
is lowered, and actual distributions of traps and transport states would have to be introduced
to describe that dispersion. The case of multiple-trappinghydrogentransport in ahydrogen
density of statesis obviously very much analogous to that of multiple-trappingelectronic
transport in theelectronic density of statesof the same a-Si:H samples. The transport
becomes non-dispersive at higher temperatures, and the simple model works.

4. Conclusion

The various relaxation processes in hydrogenated amorphous silicon that have traditionally
been described by a stretched-exponential expression, and that were recently modelled by
Van de Walle [23] in terms of three discrete energies, can also be understood in terms of
hydrogen transport at an interstitial level and trapping into a distribution of states stretching
down from∼1.0–1.1 eV below the hydrogen chemical potential. However, models based
on just two or three discrete energy levels are less satisfactory for describing relaxation at
room temperature or below.
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